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Abstract

We theoretically derive and numerically simulate a
new phenomenon called self-supervision, in which
the higher layers of a multilayer wunsupervised
network control the optimisation of the lower layers.
even when there is no external supervising teacher
present. Self-supervision is a very convenient hybrid,
which combines the best properties of unsupervised
and supervised network training algorithms.

© British Crown Copyright 1991 /MOD

Published with the permission of the Controller of
Her Britannic Majesty's Stationery Office




THIS PAGE IS INTENTIONALLY LEFT BLANK




Stephen P Luttrell, 6 December 1991

Contents
CONIENLS.......ooineeieeiierenarerererstaeseeceaesseseastraseestatersesessrsasesnsssneseesnssseassnsassases i
LiSTOf FIBUIES ...cootiieiiiiiinenrecteenretersse e ete e e b et b esaereebesrasbenbesae s ii
1. INTOAUCHON .......oeeeemrenrnernetereieeeotntne s reesessesaesessessestonnasssansnsssasseseess 1
2. Vector QUaNUSALION MOGEL........cccceesruerereerenenrsesereereseessecsssasensraceseresssnses 2

2.1. Diagrammatic interpretation of vector quantisagon................... 2

2.2. Ensemble average vector quantisation . 3
3. Numerical EXPETIMENLS .........ccccereemiiierireirieesnsacseesrncssesssnssressessessnsassenss

3.1. Basic network operation

3.2, SpHUNG PrOCEAUTE .......oeecereeerecaieerncvenecrcrssenreesee e reenneees

3.3, Experimental TeSults .........ccoiviiveecticenreieenierer e eeseeeaenees
Q. CONCIUSIONS. ...cmeeniieietiiieticsierectreerae e rreae e eneseneerseaessaeeveeseeatssaserneeren
S. Recommendation ...........cceririenmneniiiienieene ettt
6. Notation and terminology..........c.cocvecreurvecrunnes
T APDORAIX ...t sttt et aa e saesre e raas

7.1. Vector quantisation
7.1.1. Vector quantisation for a noisy channel..................... 18
7.1.2. Nearest neighbour versus minimum distortion

ENCOAINEG. ...vvnirenccriiniicee et 18
7.1.3. Mean field versus local field optimisation .................. 20
7.1.4. Two-stage veCtor QUantising...........ccococreemrrrecrerennen 22
7.2. Analytically solvable quantisation model................ccccocurrrnensne. 22
7.2.1. Code vector density ..........coeevicvrecminiriucenneressnensinnnes 22
7.2.2. Transition probability: integral equation..................... 23
7.2.3. Transition probability: constant code vector density
case. cerre e s b s s eaes 24
7.2.4. Transition probability: variable code vector density —_
CASE ...orrererermesisereseecserennnens crerrarens I
7.3. Estimating the code vector density 0
7.3.1. Estimation from the histograms.............cccocevvevcncncne 27 0
7.3.2. Estimation from the code vector positions................... 27 —

8. References




Solf-Sagervinion
List of figures

Figure .

Communicaton channe! encoding/decoding tmerpretancn of vedstr QUENGEEN0R

Figure 2.

Two-stage vecir quantisanos Two chamaels %, —)y, Jy, —3  aad
x; =y ¥, = 5 are coupled through 8 common chanael (v,.,) — 3 ~+ {3,");")
Figure 3.

Ensemble average two-suge vecwor quanassnon P(y',.y"/Jy,.y;) models the dsorvon
due 10 the ensemble average of feasidle (¥,.y;) = 1 — (3,"y,")

Figure 4.

The marginal PDFs P(y',ly,.y;) and P’y ;) of the ememble sverage dissorton
P(y’,.Y'5ly,.y;) determine the topographic neighbourhood funcoons for opurmsing the
X, =y, -y —x andx; ~y;, -y, —x; channels

Figure 5.

Flowchant showing the main steps in simulating & 2-stage vector quantiser, with the
second stage implemented as an ensemble average vecior quantiser The secoon in the
dashed box is an optional minimum distortion encoding scheme, which refines the
encoding found by the nearest neighbour scheme

Figure 6.

Typical spproximations to the distorion PDF P(y'\ly,.y;}) We use a very simple
prescription in which P(y’,ly,.y,) is set to onc of only three possible PDF s according 10
the value of the underlying gradient G=dP(y,.y;Vdy, These histograms may be spphicd
directly to the stage O VQ's as 1opographic neighbourhood funcions

Figures 7-12.

Plots of reconstruction distortion for nearest neighbour and minimum distoruon encoding
modes, and for independent and correlated channe! modes.

Figure 13.

Migration of the PDF P(y,.y;) due to the sclf-supervision effect of the marginal PDFs
PGy ly,yy) and P(y')ly,y;). which are the topographic neighbourhood funcuions for
optimising the x, 2y, - y," = x," and x; = ¥, - ¥," = x;” channels. Contributions to
P(y,.y;) which lie inside the vertical shaded band tend 0 migrate towrds the left. and
contributions inside the horizontal band tend to move upwards. In all cases the migration
is in the direction in which the corresponding marginal PDF is biased. Compare Figure
4,

Figure 14,

(a) Determining the nearest neighbour code vector position for a single vector quantiser.
(b) Determining the PDF P(y%y) of the nearest neighbour code vector position from the
code vector density p(y) of an ensemble of vector quantisers.

ii




Swphca P Lurtrell. 6 December 1991

1. Introduction

A common cnincism of wasupervised adsptive actworks is thew poor performance &s
classifier nerworks (1e. supervised nerworks) 1o {1) the so-called “leaming vector
quantisation” (LVQ) method was incraduced s whach an exsernal wacher supervised the
output of 8 vecior quantiser (VQ), and steered it towards s desired target output. This is »
hybrid approach, using both unsupervised and supervised clements 10 its tunng
algorithen, and it has met with hented success bocause the ability of a VQ o wilor
sophisticated class boundaries is rather limisned. Basically, s VQ is a single stage network
with very limiwed capebilities. we owmst use a multstage VQ © enhance the
performance’.

The novel result that we present in this memorandum is that it is pOT Becessary 1o
inroduce an exsernal wacher in order 10 InTOdUCE SUPETVISION nto an unsupervised
network. It tums out tha! multilsyer adaptive networks can supervise themselves ewen
though ihey are trained overall as unsupervised networks. For simphicity. we study the
theory of multisuage VQ networks that we developed in (2. 3, 4, 3). in wiuch the hugher
layers supply feedback signals 10 assist in the optimisation of the lower layers, although
there 1s no external ieacher present?.

Our network is well suied 10 the problem of low-level image processing, where
information st exch length scale should be processed in the hight of contextual
information at longer length scales. There are many ways of implementing contextual
processing. but our multistage spproach 10 this problem distinguishes itself by scaling
well 10 high-dimensional problems’.

In {6. 7] we successfully apply our theoretical resuls 1o time series and image
compression, respectively, and in {8, 9) we solve the problem of dewecting statisucally
anomalous features in statistically homogeneous beckgrounds. Self-supervision should
improve the performance of the network in these applications. because it exwends the
sequential layer-by-layer optimisation that we used in {6, 7. 8, 9] w0 a full globa!
optimisation of the multilayer network®. Furthermore. the “top-down™ information
pathways that self-supervision uses sre the same as those required by an LVQ-like
supervised network. which allows us easily 10 extend our approach to become a full
classifier network.

In Section 7 we present a simple diagrammatic review of vector quantisation, and its
extension (o 2-stage vector quantisation. In Section 3 we perform some numerical
simulations to demonstrate the self-supervision effects that emerge in a 2-stage VQ.

In the appendix we review the general subject of VQ's, and we derive the properties of 2-
stage VQ's in the limit of 2 large codebook size (i.e. the continnum limit). This
derivation is rather technical, but it is the central theoretical result upon which self-
supervision depends.

’Thn'min-dopunhmm Rilayer purcay »
MMmhM-hmeWb-ﬁdnwmhmanvu.wb‘ivyﬂu

think of the exiernal wacher as Mmerely the infleence of hose leyer(s) of the sdapuive astwork thas lie deyond the last one thar we
ticithy siamal

Hbe chi wptrficially rovembles the srchisacaere of the primese vissal cones. This is not sccidental! In the fotare we

propose 5 develop thane iduat Mo an srchitactere 1het feoks much more hike & viswal conesx

“The problem of local minima is ner soived by sell.supervision
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2.  Vector quantisation model

In the appendix we collect together some background theory on VQ's. In this section we
present a diagrammatic summary of this theory.

2.1. Diagrammatic interpretation of vector quantisation

In 8 VQ the compression and reconstruction process may be interpreted in terms of
encoding and decoding during transmission of information through a noiseless
communication channel’, as shown in Figure 1.

y X' (y) X
channel reconstruction

Figure 1. Communication channel encoding/decoding
interpretation of vector quantisation.

There are two distinct methods of encoding that we should consider:

1. Nearest Neighbour Encoding (NN): Select the codevector that lies closest to the input
vector, in the Euclidean sense.

2. Minimum Distortion Encoding® (MD): Model the noise on the communication
channel, then select the codevector that on average produces the closest estimate of
the input vector, in the Eucliden sense.

We can use NN encoding as an approximation to MD encoding when the signal-to-noise
ratio on the channel is large’; this approximation is exact in the limit of vanishing
channel noise.

We may generalise the simple encoder/decoder system to a set of nested VQ's. For
instance, in Figure 2 we show a two-stage VQ.

In Figure 2 we transform the components of the input pair x=(x,,x,) to yield ine
corresponding components of the pair y=(y,.y;). which is we then input to the nested
VQ, whose output components y'=(y’,,y’;) we use to reconstruct the corresponding
components of x'=(x’,,x",). In [3, 4, 5] we present an approximate method of training the
channels x, 5y, -y, =%, and x; >y, ¥, = %,’ independently, by modelling
them as a pair of noisy channel VQ's (as in Equation 10). Although in this scheme we

o Py

50ur resuhts could indeed be spplied 1o the optimisstion of VQs for ication of informati agh poity
channels, bt that is sor the purpose of our - mmmlu-mavomlummm
chsd-fommlyncwhumnvhehwmyd\mmwdﬂdopw d ding of more complicated models in the future.

‘hl.mull(I2]w&nv¢chhsnydedemndmwhwnwulnlndmlheumtmm
Mmdﬁquum!-dnﬁuuwun dependent of the nei g 2caler quantisation and miid

ints on the neighbouthood functi lnl.umlill!]nmlmdmldmvmmdhumhfovhncwr
@muulmm%nhﬂnmdmwmmw»mwmmlnmard\mvdnhmm
some of the asymptotic properties of VQs 10 be the same as those of topographic mappings, provided that we use the MD encoding
rather than the NN encoding.

7Cavuu.thihmmwdmunNNmnnwmmmuhmm

2
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assume (incorrectly) that the channels do not mutally interfere, we nevertheless obtain
useful results®

reconstruction 2

Figure 2. Two-stage vector quantisation. Two channels
X,2y -y 9%’ and x,-y,y, —x, are coupled
through a common channel (y,.¥;) = Z = (¥,.¥5).

We may further generalise the system in Figure 2 by creating a multi-stage structure of
nested VQ's, which we may use for time series and image compression (see [6, 7).

2.2, Ensemble average vector quantisation

We now consider the effect of mutual channel coupling on the optimisation of a nested

vQ.

Figure 3. Ensemble average two-stage vector quantisation.
P(y’1.¥’5l¥;.¥,) models the distortion due 10 the ensemble average
of feasible (y,.y,) 2z = (,".¥7)

8For i the very f d " thas we reported in [8.9] relies emirely on the indepandent ch
lnha,nmldhavebmmpomuewou.munmynwdmmm;wm(du&rdZuwudxmhyumnVAXunmJIW)
without the independence assumption.
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In Figure 3 we show an ensemble average veruon of Figure 2. where we whs o
average over realisanons of the nested VQ (y,.y;) ~ 2 = ' 0}

The ensembic average approach is Spproprisic 8 GUANONE WhOT ®¢ CORBAWNL)
update the nested tansformation (y,.y,) = 8 ~ (y',.)";) & pan of » smmag Khaduk
leally, we should opimise the x,—y, y, =3, aad Ny y ~n
tansformations 1o adapt W the changes in the (y,.9,) ~ & = (3, ;) seasformenon bt
this is time consuming. Rather, it 15 betier for us © arruage thewe tuasformaton W
adapt 10 the propertics of the ensembdle of (y,.y;) — 2 =+ (3',y",) Tamformabiany tha
might occur.

Using the marginal PDF's P(y’/ly,.y;) and POy, 9,0 of PUO'y "0y ;). we may wnie
the expression for the distorrion in Figure 3 as

D-Idx,dx, P(:..!,)]dy:P(y,‘ly.(x.).y,(:,))Inf(y:)—t‘l' e [lee?) (1

We may interpret the various contnbutions 1o the expression for D by workieg from ghe
outside of the expression 1o the inside as follows

1. The fdx, dx, P(x,.x,) (...) integration sverages over all the painy of tnputs (s, 0, 20

channels |1 and 2, and P(x, x,) specifies the probability density wath whach each pax
occurs.

2. The fdy', P(y')ly,.¥;) (..) integration averages over all the posubie distortons of
channel 1, due to the confluence of channel | and channe! 210 the nesed VQ

3 Wy is the Euclidean distance between the input vecuw . and it
reconstruction x',{y’,) from the distoried version of channe! |

4. (1 & 2) denotes an analogous term for channel 2

In Figure 4 we represent diagrammaucally in  (y,.5.)>-space (and (¥, ¥";)-space) the
various terms of Equation 1.

We represent the contours of a typical P(y,.y;). 8 typical P(y',.¥';'¥,.5;). and the profiles
of its two marginals P(y"|ly,.y;) and P(y'Jly,.y;). These marginals have a shape that
depends on (x,.,x;), which therefore mutually couples the contributions to the distortion
in Equation ). arising from the two tansformations x, =y, -y, —x%;, snd
X; 3y, ¥; ~» x;". Itis both pleasing and econotnical that the ensemble average nested
VQ in Figure 3 automatically determines the topographic neighbourhood functions for
its X, >y, -y, 2%, and x; 9y, y;’— x,” ransformations. thus eliminating the
need to introduce them by hand®.

In the appendix we show how to minimise D by using a minimum distortion prescription
in which we simultaneously optimise y,(x,) and y,(x,). We sometimes approximate this
by using a nearest neighbour prescription.

meﬁ;h-mfmmmm.mwwuuﬁ-m Hod we ssemprad 10 wse ¢ more
sophisiicated type of model, we mon: likely would have missed Uvis slegant rasuk. Now we are slen © the possitninty of wpngraphe
merp wons of more plicased models, where before we were ignoram of s possibehity

4
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.Y

¥, (x,)

P(";"ly/\

¥ (x) Y.\

Figure 4. The marginal PDFs P(y'ly,.y;) and P(¥,ly,.y;) of the
ensemble average distortion  P(y',.y'Jly,.y;) determine the
topographic neighbourhood functions for optimising the
X, =y, -y, -x andx; 5y, y;' = x;" channels.

3. Numerical experiments

In this section we present a simple numerical simulation which demnonstrates some of the
benefits of self-supervision

3.1.  Basic network operation

We run all of our numerical simulations using the network structure in Figure 3, with a
4-dimensional input vector X=(X,.X,}~(X,;.X)2.%3,.K3;), and with scalar outputs from the
encoders y,(x,) and y;(x;). This is the minimal npetwork that functions as a self-
supervised VQ. In realistic applications we would expect much more complicated
networks to be used, but they would all operate according 1o the principles demonstrated
by the network in Figure 3.

In Table 1 we tabulate the various modes of operation that we use in the numerical
simulation the we outline in Figure 5




Self-Supervision
Nearest Neighbour Minimum
Encoding Distortion Encoding |
Independent Channels NN/ MD/1
Correlated Channels NN/C MD/C

Table 1. Encoding and channel modes used in our numerical
simulations. NN=necarest neighbour encoding, MD=minimum
distortion encoding, I=independent channels, C=correlated
channels. :

In encoding mode NN we ignore the fact that P(y’,ly,.y,) and P(y'ly,.y,) affect the
resulting (¥;,¥,) in Equation 18, whereas in encoding mode MD we take full account of
their influence. Note that the part of Figure 5 that is enclosed in a dashed box is the inner
loop that handles the minimum disto. don aspect of encoding mode MD. However, when
we use encoding mode NN, we must still invoke step 3 (i.e. "compute distortion PDFs")
of the simulation, because the distortion PDF's are required by step 6.

The two channel modes I and C test the effect of switching self-supervision off and on,
respectively.

We now describe in greater detail each of the numbered boxes in Figure 5.
1. Clamp Layer O Inputs

Generate  X=(x,,X,)=(X,;,X,2,X3;,X;;) Using an appropriate random vector generating
routine. We choose (x,,,X,,) as a uniformly distributed random vector in a disc-shaped
region, and then generate (x,;,X,,) by rotating (x,,.x,,) about the disc's centre by an
random angle uniformly sampled from the interval {-€,+6].

The details of how we generate each x are as follows. We use circular random variables
in order 10 ensure that there is no preferential orientation. We generate (x,,.x,,) from
(X,1.X;2) in the way described in order to ensure that the marginal PDF's P(x,;.x;,) and
P(x;,,%y;) are the same. We randomly rotate within [-6,+8] in order to ensure that
(x,1,X;2) and (x,,,X,,) are not completely correlated yet not completely independent in a
way that is conwolled by the sizz of 6. The limit 6=0 gives
P(x)=P(x;,,%)3)8(x5;-X,)8(x45-X4,) (i.€. identically correlated), and the limit 6-=n gives
P(x)=P(x,,.%,2)P(X3;,%3;) (i.e. completely independent). The overall effect of this
prescription for generating inputs X is to create a training set with fixed marginal PDF's
and programmable correlations, as we require in order 1o demonstrate self-supervision in
a carefully controlled way.

2, Compute Nearest Neighbours

We specify the stage 0 codebooks by X' \(y,)=(x";,(y,)X'1o(y;)) and
X’ (y2)=(x"3;(¥2).X"22(¥2)), s the nearest neighbour encoding prescription yields

argmin
gy ((X;l(y.)‘xn)z+(";1(Y1)_xu)2)

- )
arg mm(

y?(xn Xpp) =

Y3 (X1 Xgg) = (x50 (¥ )= x5, ) + (Xa (¥5) = %52)')

2
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This is a standard procedure which should need no further explanaton For brevity,
denote the result of this operation as y‘*-(y‘.’.y:). Encoding mode NN uses y°, whereas
encoding mode MD refines y° somewhat in the ensuing steps.

3. Compute Distortion PDF's

Channel mode C: The joint distortion PDF is P(yly)=P(y’,.y’sly,.¥;). whose two
marginal PDF's P(y’,ly,.y;) and P(y'jly,.y;) specify the wopographuc neighbourhoods of
the stage 0 codebooks.

Channel mode 1: We also use the two reduced marginal PDF's P(y’,ly,) and P(y';ly;) 0
perform a conuol simulation in which the pair of VQ's are ouined independenty The
mode I simulation acts as a control 10 check that the self-supervision effects that we
observe in the mode C simulation genuinely anse from the tansfer of informaton
between the pair of VQ's.

We derive P(y’;ly,.y;) (and P(y"}ly,.y,)) from P(y,.y,) using a heuristic procedurc which
we may obtain from the following simplification of Equauon 3§

P(y, ly;.y2) = P(Y'1.y) expl- % ply,.y;) (v,-y,)?) ()

where we retain only those terms that depend on y',. We may interpret the terms in
Equation 3 as follows. The exponential factor determines the envelope of values of ¥',-y,
that are permitted by the PDF, and the p(y",.y;) factor provides a bias that weights the
PDF in the direction of increasing code vector density. If we recall that p « PV 1w
P12 (for our N=2 dimensional VQ's), then we may replace the p factors ir Equanion 3 by
P2 factors. In our simulations we shall go one step further by approx:mating Equation 3
as

r(y, ~Yy,) G>«x
P(yily,.y) ={(n(y; =y, )+ ®(y, -y)}/2 [G[sx ()
n(Y1-yl') Gc<-x

where G=9P(y,y,)/dy,. We display 2 typical set of distortion PDFs as histograms
plotted against Ay=y’,-y, in Figure 6




Self-Sepervhion

reduce error

Update code veciors

v

Clamp layer 1 inputs

v

Update histogram

Figure 5. Flowchart showing the main steps in simulating a 2-
stage vector quantiser, with the second stage implemented as an
ensemble average vector quantiser. The section in the dashed box
is an optional minimum distortion encoding scheme, which
refines the encoding found by the nearest neighbour scheme.
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x II !|
Gex & Gicx &Y O>w A

Figure 6. Typical spproximations to0 the disorton PDF
P(y'\ly,.y;). We use a very simple prescripion in which
P(Y'|ly;.y;) is set 10 one of only three possible PDF's according 10
the value of the underlying gradient G=dP(y,.y,)@y,. These
histograms may be applied directly 10 the suage 0 VQ's as
topographic neighbourhood functions.
The whole of Equation 4 (and Figure 6) is specified by the values of just 3 numbers.
Each dP(y,.y,)/dy, is specified by the values of 3 numbers. We choose t0 define them as
follows

n. Ay=-l
"(y,~y/)=4{®, 8y=0 (5)
n, Ay=+]
3 ) x,

1 0.35 0.60 0.05
2 0.30 0.60 0.10
3 0.25 0.60 0.15
4 0.20 0.60 0.20
5 0.15 0.60 0.2
6 0.10 0.60 0.30
7 0.05 0.60 0.35

Table 2. Values of n, and %, that we use in 7 separate numerical
experiments. Experiment 4 uses an unbiassed distortion,
experiments 5-7 use a distortion that is biassed in the direction of
increasing PDF (see Figure 6), and experiments 1-3 are biassed in
the opposite direction. Only experiments 5-7 have a distortion
that corresponds to the one required by theory.
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In Table 2 we list the values of x, and X, that we use in 7 separate numerical simulations.
We use a variety of values in order to investigate the effect of both positive and negative
biasses, i.e. biasses both in the direction of and opposite to the gradient of P(y,.y,). Note
that only a positive bias corresponds to the requirements of Equation 3, where p(y',.y;)
biasses P(y’,ly,.y,) in the direction of positive aP(y,.y,)/dy,.

We may remove the effect of self-supervision by replacing Equation 3 by

Plyily,) = ply;) exp(-xpty,)(y; - y,)°) ©)
where p(y,) depends on the marginal PDF P(y,). Natura'ly, we can generatc the
marginal PDF's during a numerical simulation in which we use joint PDF's.

4 Compute Expected Reconstruction Error

From Equation 1 we may write the expected reconstruction error D(x) for the current
input vector x as

D(x) = [dy; P(yity, v ) ((xf ()=, ) + (x5 (9)-%,)') + (1) ()

where we initialise (y,.y,) to (yoyy) the first time we pass through the minimum
distortion loop. We evaluate the integral over y*, (and y’;) somewhat crudely as a sum
using the appropriate histograms chosen from Figure 6.

5. Adjust Encoding to Reduce Error

Now that we have calculated the expected reconstruction error D(x) for our initial guess
(y‘,’.yg) at the correct values of y,(x,2.X,;) and y,(X3;,X3;), we must investigate how it
varies in the vicinity of (y‘,’,yg). We may then locate the local minimum (y,.y;) of D(x),
which in general will not be (y,.y2)=(y?‘yg) (i.e. minimum distortion encoding is not the
same as nearest neighbour encoding). Note that for each alternative value of (y,.y,) that

we investigate we must repeat steps 3 and 4 in order to determine the corresponding
value of D(x). In our simulations we explore only the immediate neighbourhood of

(y?,yg) given by

y, €{yl.y! 21}
v, €{ys.yi 21}
This rather limited search for the minimum distortion encoding succeeds only because
we choose to use the distortion PDF's P(y’,ly,.y,) and P(y’,ly,.y,) that we show in Figure
6. If the range of these distortion PDF's were greater, then we would have to consider
using a longer range search procedure.
6. Update Code Vectors
From Equation 19b we may write the code vector update prescription as

8

Ax; (y,)=€P(y, ly,,y,)(x, =x{ (y,)) 8)

10

s i
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where (y,.y,) is the minimum distortion encoding located in steps 3-5 above. In our
numerical simulations we use €=0.] throughout the optimisation; we do not gradually
reduce € to zero.

7 Clamp Layer 1 Inputs

Now that we have finally decided what (y,.y;) should be output by the encoders
(y1(x,),y2(x,)) we may use this to clamp the inputs to layer 2.

8. Update Histogram

Layer 2 contains a (leaky) histogram representation of P(y,.y;) which we now update
according to the prescription in Equation 42, with the decay term implemented as
r(k)-r(k)/e after every 1/(1-B) time steps. In our simulations we use 3 memory time of
1/(1-B)=100.

3.2. Splitting procedure

In [4) we presented in detail a phenomenological distortion model that we used to obtain
an cfficiemt training procedure for topographic mappings and their application to
multistage VQ's. Alternatively, we could use the standard topographic mapping training
procedure in [12], but this is a rather inefficient algorithm. It is much more efficient to
use a splitting procedure where we perform a crude optimisation using 2 codevectors,
which we then use 10 initialise a more refined optimisation using 4 codevectors, and so
on. In our simulations we stop at 8 codevectors. This "coarse to fine" swategy is very
effective at rapidly producing an optimum set of codevectors.

In our numerical simulations we optimise each generation of code vectors using 50
training vectors per code vector, before splitting to produce the initial code vector
configuration in the next generation.

3.3. Experimental results

We now present the results of several numerical simulations conducted according to
procedure that we have described. We run each simulation 4 times to cover the
possibilities NN/I, NN/C, MD/I and MD/C that we show in Table 1.

In Figure 7, 8 and 9 we present the NN/I and NN/C results, and in Figure 10, 11 and 12
we present the MD/1 and MD/C results. In each Figure we present two plots for channel
modes I and C. The dashed lines indicate error bar envelopes, where each point that we
plot is the average of the value of D obtained from 16 independent optimisation
simulations (in each simulation we accumulate statistics for 256 test set samples to
estimate D).

In the case of symmetric distortion (i.c. entry number 4 in Table 2) the I and C plots
produce the same value of D. This is because this type of distortion forces
P(y’,ly;.y2)=P(y",ly,). This is a simple check of the consistency of our I and C results.
For positively biassed distortions (i.e. in accord with theory) the C plots are
systematically lower than the I plots. This behaviour demonstrates convincingly that self-

supervision produces a reduced reconstruction error, whether NN or MD encoding is
used.

11
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For negatively biassed distortions (i.e. in contradiction with theory) the C plots are
sysiematically higher than the 1 plots. Because we use an artificially incorrect distortion
it is difficult t0 interpret this result closely. It merely corroborates what we might have
expected to happen when we ignore what the theory tells us 10 do.

When we study the effect of encoding mode, we discover that the MD plots are
systematically lower than the corresponding NN plots. This behaviour demonstrates
convincingly that a full search for the appropriate encoding is better than a partial search,
whether I or C channels are used. This is to be expected.

As the correlation between the channels is reduced (i.e. increase the input correlation
angle), the difference between the I and C plots systemadcally decreases, except for
Figure 12 where we present the MD/1 and MD/C plots for uncorrelated inputs. We would
expect that I and C plots should overlap in Figure 12 and in Figure 9, because there are
no correlations between the channels. However Figure 12, and to a lesser extent Figure
9, show a clear departure from this expectation. This apparent failure occurs because the
histograms suffer from Poisson statistics, so they do not record independent channel
statistics (i.c. what is recorded in the histograms does not satisfy P(y,,y,}»*P(y,)P(y,)), so
the C simulation is affected by these spurious correlations to produce results that differ
from the I simulation.

Taken together Figures 7-12 demonstrate the consistency of our numerical simulations,
and demonstrate the benefits of self-supervision (and, coincidentally, minimum
distortion encoding) when a simple network is applied to an artificially constructed set of
data. These results corroborate the theoretical results that we presented earlier.

4. Conclusions

The main result that we present in this memorandum is the theoretical derivation of and
numerical simulation of the phenomenon of self-supervision. For illustrative purposes we
consider the problem of a pair of communication channels that cause mutual distortion.
In our numerical simulations we present a simple demonstration of the improvement in
performance that we can obtain be jointly optimising the pair of communication
channels, compared with independent optimisation.

In order to make contact with the theory of unsupervised adaptive networks we model
the communication channel problem as a nested VQ, as shown in Figure 2. The effect of
the inner VQ models the mutual channe] distortion, and thus influences the way in which
the outer VQ's must be optimised. This is the phenomenon of self-supervision, where
one part of an overall unsupervised network supervises the optimisation of another parn
of the network.

This principle may easily be generalised to a muitilayer unsupervised network, although
we have not done so in this memorandum. This would mean that we operaie an
unsupervised multilayer network in such a way that it supervises its own internal
operation by passing conwol signals back from higher layers to lower layers, which in
turn causes the lower layers to process their inputs more effectively.

12
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s, Recommendation

The results that we present in this memorandum suggests an interesting new direction of
research into multistage LVQ networks. The LVQ approach (1] 10 training a classifier
network has had limited success because it uses a single stage VQ (with supesvision).
Our multistage VQ network could be supervised in the same way as in the LVQ method,
and the training signals backpropagated down through the layers of the network. At each
layer the backpropagating signals would consist of two components: a term which
requires the code vectors to be updated (i.c. a programmable topographic neighbourhood,
as in self-supervision), plus a term which requires the layer's inputs to be updated. The
first type of term is familiar from our experience with self-supervision, whereas the
second term is new (it did not occur in our simulations because we did not experiment
with multilayer networks).

6.  Notation and terminology

Single stage vector quantiser:
x = input data
y = compressed data
x’ = reconstruction of the input data
¥(x) = compression operation, mapping x — y
x’(y) = reconstruction operation, mapping y — x’
P(x) = PDF of input data
P(y) = PDF of channel data
Two-stage vector quantiser:
X, = input data (channel 1)
X, = input data (channel 2)
¥, =compressed data (channel 1)
¥, = compressed data (channel 2)
¥’y =distorted compressed data (channel 1)
y’, = distorted compressed data (channel 2)
x’; = reconstruction of the input data (channel 1)
x’, = reconstruction of the input data (channel 2)
¥i(x;) = compression operation (channel 1), mapping x, — ¥,
¥5(x,) = compression operation (channel 2), mapping x, = ¥y,
x’;(¥’;) = reconstruction operation (channel 1), mapping y’, - X',
x’5(y’y) = reconstruction operation (channel 2), mapping y', ~ x’,
x(y,,y,) = compression operation (fusing channel 1 and channel 2)

14
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¥’,(z) = reconstruction operation (recovering channel 1)

¥';(z) = reconstruction operation (recovering channel 2)

P(x,,x,) = joint PDF of input data (channel 1 and channel 2)

P(x,) = marginal PDF of input data (channel! 1)

P(x;) = marginal PDF of input data (channel 2)

P(y,.y;) = joint PDF of compressed data (channe! I and channel 2)

P(y’,.¥51y,.¥;) = conditional PDF of distorted compressed data (channe! 1 and
channel 2)

P(¥',!y,.y,) = marginal conditional PDF of distorted compressed data (channel 1)
P(y’,ly,.y,) = marginal conditional PDF of distorted compressed data (channel 2)
Note that we use the terms compress/encode (and reconstruct/decode) interchangeably.

We also use the generic notation P(-) to denote a PDF, so unless we state otherwise the
functional form of P(:) may be deduced from the nature of the argument that we insernt
into the function.

Finally, we use the word "stage” to denote a pair of adjacent layers in a multilayer
network. Thus "stage 0" means “layers 0 and 1. We use this terminology 1o refer to the
transformation between layers, rather than the layers themselves.

7. Appendix

In this section we present a resumé of the VQ theory of Linde et al [10] (the LBG
algorithm), and its extension to multistage VQ's [2, 3, 4, 5). These extensions are related
to the VQ theory of Kumazawa et al [11] for communication over a noisy channel, and
to the topographic mapping theory of Kohonen [12] for training self-organising neural
networks !0,

7.1.  Vector quantisation

Define x as the input data, y as the compressed data, and x’ as the reconstruction of the
input data. Define y(x) as the compression operation x — y, and x'(y) as the
reconstruction operation y — x’, which yields overall x’=x’(y(x)). Noie that the
compression and reconstruction process may be interpreted in terms of encoding and
decoding during transmission of information through a noiseless communication
channel!!, as shown in Figure 1.

We may combine these quantities to obtain the average L, (i.e. Euclidean) distortion D,

1hiererchical VQ theory and topographic mepping theory are not axactly equivalent, but the wility of allowing topographic-type
mappings 10 emerge natenally from minimisstion of a Lyapunov fenction cennot be overemphasised. K is temgpring w0 suggest thet
Kobouss should have formalessd bis theory in this way in the first placs.

"NM“‘W&W&NWnMdV@I«MdMMqu
channels, bt that is aot the purpose of our resserch programme. Owr primery motivation for weing s VQ model 3 16 obtain simple
closed-forms analytic solutions, which we may then wes 10 develop our undersanding of move complicased models in the future.

15
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D, = _[dx POO)x"(y(x) - x}’ )

The VQ whose (continuum limit) codebook is defined by the pair of functions
(y(x),x’(y)) can be optimised by minimising D, with respect to variations of y(x) and
x'(y).

7.1.1. Vector quantisation for a noisy channel

A more general form of Equation 9 that gives the average L, distortion for a VQ with a
noisy communication channel [3, 4, 5, 11] is

D, = [dx P(x) [ dy’ m(y' - yo) &' (y)~xf’ ao
In Equation 10 we assume that y’=y(x)+n, where n is a random noise variable with PDF

n(n), so P(x,n)=P(x)n(n), assuming x and n are independent.
7.1.2. Nearest neighbour versus minimum distortion encoding

We functionally differentiate D, to calculate the zeros of 8D,/8y(x) and 8D,/8x’(y),
which yields!? (see [3, 4, 5] for the details)

min

y(x)= argy [ay nty’ -y y)-xff ay

Jax Paxym(y - yoxpx
fax Py ey - y(x))

x'(y)= (12a)
Ax'(y) =en(y - y(x))(x ~x’(y)) (12b)
In Equation 12 there are two methods of updating x"(y).

1. Bawch update (Equation 12a): This is equivalent to one cycle of the LBG algorithm
[10).

2. Continuous update (Equation 12b): This is identical to the topographic mapping
training algorithm [12], so x(n) can be interpreted as a topographic neighbourhood
function!?,

In Equation 11 there are two distinct cases to consider.

“'memum«m deris usually & di d does not invahidate our use of an assumed continuOUs CUTPYL i our
derivations. We wse conti derivations b it is simpler 10 soe What is going on. ANerwards, wa convert our continuum
into di derivations by exchanging integrals for sums, detivatives for finite differences, ac. Note thet it is not in
geneval easy 10 conven i the opposite direction (i.e. from » & iculation imo & "smooth” continuam calcalstion), but this does
0ot affect our resuhy.
137his proves 10 be & very fentile way of theormically Nandling topographic mapping ph
16
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1. Nearest Neighbour Encoding (NN): When x(n)=5(n) (i.c. the noiseless case)
Equation 11 specifies a nearest neighbour encoding prescription y%x), i.e. given x
select as y=y%(x) the y that minimises lx"(y)-xIl2.

2. Minimum Distortion Encoding (MD): When x(n)»3(n) Equation 11 specifies a
minimum distoriion encoding prescription y(x), where the effect of n(n) is
anticipated when selecting y(x).

NN encoding can be used as an approximation to MD encoding when x(n)wb(n). In

order to compare NN with MD encoding we develop a Taylor series expansion of the

lx“(y")-xl12 factor in Equation 11 about its stationary point y'=y%(x)

Ix:(y:)_ xlz = do + * z(yt_yo)l (y'_yo)jd:i +*‘§(yr_yo )'(yr_yo ),(y'—y° ). d:. +-- (13)
L)
where d°, d,zj and d,; are the zeroth, second and third derivatives of lIx’(y)-xIi? at y=y°(x)
d® = |x’(y° xp-xf’

2
dl= 9

(14)
Y a)'iay)

ORL§

yeyoln)

Ix*(y) - x|’

a:
v
dy;dy 0y, .
whence
Dy(x) = [dy’ n(y-y) Ix'(y’)-xi? =
@+ %Z( nizj"‘nil (Y'Yo)f""j' -y Hy-YOiy-y%);) d-i +

1y

£ (Rt Ry Y009 20m) (RG5O 93 sm) +3-YOU Y-y -3Oh ) + ~(15)
ijk
where we have defined the first three moments of n(n) as

7‘: = fdn n(n) n;
1:3 = fdn n(n) nn; (16)

1!?,, = fdn n(n) nnn,

To locate the minimum distortion encoding y(x) we must minimise the expression given
by Equation 15 with respect to y.

17
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If we ignore the skewness matrix d", then we can reduce the problem to minimising
Z(y-y%n‘),(y-y"m‘)ld:. The Hessian matrix d: has no negative eigenvalues, because in

U]
Equation 13 we expanded about a local minimum of Iix’(y)-xII2, so we obuin
y(x) = y¥(x) - =! an

The solution is shifted away from the nearest neighbour encoding y%(x) by an amount
equal to minus the bias that x(n) inooduces. This is intuitively reasonable because the
effect of minimum distortion encoding anticipates the distorting effect of x(n), and will
compensate for any bias that x(n) introduces.

When n!=0 it is important to0 retain d,; because it is then the lowest order contribution to
the difference between y(x) and y%(x).

7.1.3. Mean field versus local field optimisation

The update prescription depends on the biassed marginals P(y,ly,.y,) and P(y,y,.¥,).
which causes a migration of P(y,,y,) as shown in Figure 13.

The widths of the marginals P(y,%y,.y,) and P(y,y,.¥;) determine the widths of the
vertical and horizontal bands of P(y,,¥,) that are affected. It is these changes in P(y¥,.5,y)
(and hence P(y,"ly,.¥;) and P(y,ly,.y,)) that cause the differences berween the “"mean
field” and "local field” optimisation procedures.

Strictly speaking, the change to P(y).¥2) is not restricted entirely to the vicinity of the
two regions indicated in Figure 13. For instance, the movement of the code vectors in
the topographic neighbourhood of yj(x) and y3(x) can change the shape of the
quantisation cells of other code vectors, which, in turn, causes other changes to P(y1.¥2).
However, this is a second order effect.

We see from Figure 13 that the net migration averaged over all inputs has the affect of
squeezing the P(y,.y,) distribution. This inward pressure is counterbalanced by the
strerching tendency of each marginal P(y,} and P(y,) to become approximately uniform,
as normally occurs in VQ's!4.,

When we perform a "mean field" simulation we do not take account of these changes to
P(y1.y2) (and hence P(y,y,.y,) and P(y,ly,.y,)) when we calculate the gradient of D in
Equation 1. However, in our simulations we represent P(y}.y2) as a slowly drifting
histogram, so the changes to P(y},y2) gradually become felt later on in the simulation.
This does not mean that we effectively take P(y].y3) variations into account in a "mean
field" simulation, because when the "mean field" simulation reaches equilibrium so that
the drift of P(y1.y2) vanishes, the "local field" gradient of P(y{,y3) does not vanish.

“lnlormmy.nanilwumhmpem&onummglomhnmwml' f ion ly;:y7) y) =d 35 Thet
Ity yipgleHly, o Hly k- Hiy ;37 )R0, where Hi] is the antropy of its argument, and stretching causes Hiyq] snd Hiyj) 10 increase,
wherm:quuin.umsHu,.yzlwbcmu.h-uIu,;yzlmmmmmsi‘wm’m.unul
information can be used as our batic optimisation criserion instesd of L, distonion minirmisstion. An axsmple of this spproach and its
Iationship W the optimisation of a novel class of hi hics! Gibbe distributions can be found in Luttrell [15,16).
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v,(x)

y

1

Figure 13. Migration of the PDF P(y,y,) duc to the sclf-
supervision effect of the marginal PDFs P(y',ly,.y;) and
P(y",ly;.y;). which are the topographic neighbourhood functions
for optimising the x, =y, ¥y, —x;,  and x, 5 y; - ¥, = x5’
channels. Contributions to P(y,.y;) which lie inside the vertical
shaded band tend to migrate towrds the left, and conuibutions
inside the horizontal band tend to move upwards. In all cases the
migration is in the direction in which the corresponding marginal
PDF is biased. Compare Figure 4.

7.1.4. Two-stage vector quantising

When we minimise D using the mean field procedure we obtain

03 (X,)¥2(%,)) = ’(;‘l';'z’;' ( [y, POy ly,.y) IR, (¥ %12 + (1 2)) 18)

f dx, dx; P(x,.x;) P(y,ly,(x,).y2(x3)) X,

X\ = (19)
f dx; dx, P(x,.x;) P(y,ly;(x,).y(x,))

Axy(yy) = € P(yly; (%,).y,(xp) (%,-X'y(¥,)) (19b)

which should be compared with Equation 11 and Equation 12. Note that Equation 18
specifies a minimum distortion prescription in which we simultaneously optimise y,(x,)

19




Self-Supervision

and y,(x,). using P(y’,ly,.y;) and P(y’ly,.y;) instead of m(y-y). We sometimes
approximate this by using a nearest neighbour prescription. Note that in [13] we
reported (in the case of scalar quantisation) that this approximation is forbidden if we
wish the density of code vectors to be insensitive to the choice of P(y’,ly,.y,) and
Py \ly,.¥))-

Note that in [13] we reported (in the case of scalar quantisation) that the use of nearest
neighbour encoding is forbidden if we wish the density of code vectors 10 be insensitive
to the choice of P(y',ly,.y,) and P(y",ly,.y,).

7.2.  Analytically solvable quantisation model

In this section we present an analytically solvable model of the ensemble distortion
P(y",.¥’5ly,.¥,) shown in Figure 4.

7.2.1. Code vector density

If the number of code vectors (y",(2),y,(z)) in the (y¥,.¥;) = z = (¥',.¥’;) codebook is
very large, then we may calculate P(y’,,y%ly,.y,) directly. Thus, we model the ensemble
properties of the codebook by defining p(y,,y,), which specifies the density of code
vectors (y',(2),¥'5(z)) in (y,.¥,)-space.

7.2.2. Transition probability: integral equation

Note that we use the notation p(y) (and P(yTy)) and p(y,.y,) (and P(y'..¥ly,.¥.))
interchangeably..

In Figure 14 we compare the nearest neighbour encoding prescription for a single VQ
with that for an ensemble of VQ's!5.

In Figure 14a we show an input vector (represented by a cross) and the known positions
of the code vectors of a single VQ. The nearest neighbour can be located by expanding a
circle centred on the input vector until it grazes the nearest code vector, as shown. In
Figure 14b we show the ensemble version of the same diagram, in which the precise
code vector positions are unknown, so there is a distribution P(y’ly) of possible nearest
neighbour locations. There is an analogous interpretation for the minimum distortion
encoding prescription.

Using Figure 14, we may write down an integral equation that relates P(yly) to p(y).
Thus

P(yly) 8y’ = (1. fdt; P(§ly))p(y') Sy’ 20)
R-yligly”-yi

’sﬁvmﬂmc we discuss here the intermediate case where the positions of the code vectors are pantially known. The most
imporiant way of acquiring pmul knowld(e n lo note lhe positions of the nearest neighbour code veclors duning training. However,

such knowledge must be gration of the code vecior positions gradually srases any memory of their
sarlier positions. Pnudboﬂnd.elmbummeenmdﬁ‘unhmdE.me.ndumlymuvuyc-nle We
choose 10 analyse the extreme case in Figure 5b b £ i rather than the knowiedge about the

codeveciors that is available.

20




Scwephen P Luttrell, 6 December 199]

where the first term on the right hand side is the probability that there is no ncarest
neighbour code vector in the sphere of radius lly’-yil cented on y. and the second term is
the probability of finding a code vector in the volume Sy’ at y'. The product of these two
terms gives the probability of finding the nearest neighbour code vector in the volume
Sy aty’.

° [ ]
« ¢ 7 py)
» [ ]
* o
. .
S
* et P(y'ly)
»
(a) ®)

Figure 14. (a) Determining the nearest neighbour code vector
position for a single vector quantiser. (b) Determining the PDF
P(yly) of the nearest neighbour code vector position from the
code vector density p(y) of an ensemble of vector quantisers.

7.2.3. Transition probability: constant code vector density case

We now solve Equation 20 for the case p(y)=p,=constant. Thc nearest neighbour code
vector is then equally likely 10 lie in any direction from y, so P(yly) must be a function
only of the radial distance lly’-yll, which gives
P(ly’-yl) =(1- fdg PGE-yI) \p, (21)
WE-yligly”-yil

where lly’-yl2=(y’-y)T-(y’-y). The integrand is spherically symmetric so we may use the
transformation

JAE PQIE-yI) =y [duEn IENN1 PQIEN) (22)
WSty "y isly"yh
where oy is a constant deriving from the angular integration in N dimensions.
Differentiate Equation 21 with respect to the upper limit lly’-yll of the I}l integration to
yield

dP(lly-yt) oI DIV
dly gl = OxPo ly-yIT Ply-yi) 23)
and integrate to yield finally
Hy’-yiIN
P(lly’-yll) = P, exp(- E&ELNLL) (24)

where P, should be adjusted to ensure that P(lly’-yll) is normalised correctly. The N=2
case reduces to a Gaussian distribution with Pg=1/(4n%p,).

21
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7.2.4. Transition p ‘obability: variable code vector density case

We now extend the previous results to the case
PO = ply) + (¥ -NT.Vp(y) 25)

which is a first order Taylor expansion of p(y”) about the point y'=y. We anticipatc that
the first order expansion of P(y1y) has the form of Equation 24 with an extra factor to
account for the angular dependence in Equation 25

Y lly’-yliIN
POlY) = Pyly) (1 + 0™y a00) exv(- M%‘—’i-) 26)
where a(y) has to be determined. Differentiating Equation 20 with respect t0 ¥ leads to
aP(yly) 3 P(yt
Jal’y—,-‘f-= : (5; fat P(&y)}p(y') +—p%§29933yﬂ @n
WE-yhsty”-ytt

where we used Equation 20 to replace a term by a P(y1y)/p(y”) factor. We may now
insert the expressions for p(y”) (Equation 25) and P(yly) (Equation 26) into Equation 27,
and make use of the results

Pyly) , p(y) y’-yI
LU 2 p 1+ s a exg- BRI

= Py(y) (a(y)-ay p(y) ly-yIN2(y"-y)(1+(y"-y)".a(y))) -

. ylIN
xp(_ oy Q(v;qllz yl ) 28

which we obtain by using 9/dy"lly’-¥lIN=Nily’-yliN-2(y’-y),

58—, fag peiy)

NElisty’-yH

Xy
ivn J95PEW
Wbty - yit

Iy’-ylIN
Py (y)ay lly-yliN2 (y"-y) exp(~ E‘m)g’-’—) (29)

which we obtain by using Equation 22 to perform the angular integration over the
surface IEli=ly’-yll, and noting that the term containing (y-y)T.a(y) vanishes after angular
integration,

PY) ,
5 = Vo) (30)

to obtain
a(y) - oy p(y) ly-yiIN-2(y-y)(1+(y"-y)T.a(y)) =

. v
- an Py y"-yIN-2(y"-y) + (1+(y"-y)".a(y)) '59(%2 31
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We then use p(y)=p()(1+(y"-y)".Vp(y)/p(y)) and Vp(yVp(y»=VpWy)p() to simplify
Equation 31 into the form

v
(a(y) - 7'%?)- ay p(y) lly"-yiiR-2(y"y) (.v’-y)T.(a(y) - Yp%?) (32)

where we have dropped the next-to-leading order terms. We may solve Equation 32 by
choosing a(y)=Vp(y)/p(y). to obtain the generalisation of Equation 24 as

)T X .
P(y'ly) - Po(y) (1 +$Ll%_(;§2§ﬂ)exp(, &ﬂ%‘ﬂLﬂE) (33)

Strictly speaking, Equation 33 does not specify a valid probability distribution because it
yields a negative probability when (y-y)T.Vp(y)/p(y) < -1. However, this result is the
leading order term in a Taylor expansion about y’=y (see Equation 25), therefore we
implicitly assume Ii(y"-y)T.Vp(y)/p(¥)ll « 1. The effect of the 1+y"-¥)T.Vp(y)/p(y) term
is to relocate the maximum of P(y‘ly) from its original position at y'=y (see Equation 24)
to a new position given by

N-1
SR 7T
Y'=3* Ny o2 Vpi 39

The direction of shift is consistent with the bias in P(y’ly) that we show in Figure 4 and
Figure 13.

Finally, we marginalise the joint distribution P(y,’.y,1y,.y,) in Equation 33 in order to
calculate P(y,ly,.y,) and P(y,y,.¥;) (which we need in Equation 18 and Equation 19).
For the 2-dimensional case (N=2, 0,=2%, (y,.¥;)(y,.y;)) this is casy because the
exponential factors are Gaussians, leading to the result

. (1Y) 9p(y,,¥5) ,

P(yyly1ya) = Po(y1ny2) (1 + ) )exp(-np(y..y,) O~y)d (35
plyyys) 9y,

with an analogous result for P(y,ly,,y,). These results may be used to model the

marginals in Figure 4.

Recall that P(y,"ly,.y,) and P(y,’ly,.y,) serve as topographic neighbourhood functions for
optimising the x; 3y, y,’—x,” and x, 3y, -y, = x,” transformations. In the
ensemble average model, these neighbourhood functions emerge naturally from the
ensemble properties of (¥,.¥;) =2 Z = (¥',.¥,), 50 we do not need to supply them
manually.

The automatic generation by one part of a network of the topographic neighbourhood
function required by another part of the same network is sufficiently novel and important
that we call it self-supervision. It is an effect that lies halfway between full supervised
training with an external teacher, and unsupervised training. It is an economical way of
extending the capabilities of an unsupervised network towards those of a supervised
network!'s,

'M-mhﬁmw«hnnm&mmmmn@iubynmwwhthmm). All they
can do is 1o supervise their internal operation, but not that of their ourput layer.
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7.3. Estimating the code vector density

In order to determine the result for P(yly) in Equation 33 we must estimate p(y) and
Vp(y) in Equation 33. We may use the asymptotic relationship!?

P(Y) = P(y)NN+2) (36)
or

Vpy) _N_VPQy) an

p(y)  N+2 P(y)

to express our results either in terms of P(y) or p(y).

If we record P(y) as a histogram of frequencies of occurrence of input vectors y, then we
may directly estimate VP(y)/P(y), and thence estimate Vp(y)/p(y)'s. We may also make
a crude estimate of Vp(y)/p(y) from a single realisation of the code vectors.

7.3.1. Estimation from the histograms

We will now describe how to estimate P(y) and VP(y) from a histogram. Denote the
transformation from continuous to discrete variables as

_ Vi - Vimi
kl(yl) lnt(yi.rmx * Yigmin é B) (38)
where y; .. and y; ., are the minimum and maximum values that y; can possibly take, B
is the number of bins in each dimension of the multidimensional histogram, and 8 is a
small positive number that we introduce to ensure that 0<k,(y,)<B (i.c. a strict inequality
at the upper end of the range). Thus the full vector index required to locate a bin in the
multidimensional histogram

k() = k(7)Y Ky (39)
which we then update using
r(k(y)) — r(k(y))+1 (40)

It is important that the histogram should also have a finite memory time in order that it
can track a time dependent P(y). This is easily arranged by making the histogram bins
leaky. For instance, the number of counts in each bin could be a real number (not an
integer), all of which simultaneously decay (before r(k(y)) is updated) according to the
prescription

(k) - B r(k) 41)
where O<f<1. The overall update process would then be described by
r(k;t+1) = B r(k;t) + v(k:t) 42)

VSiricaly spasking. this is true only for minimam distonion sncoding.
"WeooulduhoMnu‘mfot"hinogmn'nyﬂhvmhddum-hﬁq.ndinn'mmm’.
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where v(k;t) is a multivariate Poisson process which derives from the hits on the array of
histogram bins. The "memory time" of this type of process is 1/(1-8) time steps, so f§ can
readily be used to control the ability of the histogram to track a time dependent P(y).

A less computationally intensive prescription for histogram decay would be to use
Equation 42 to decay the histogram bins only occasionally. For instance, if we decay
r(k)—r(k)/e after every 1/(1-B) time steps, then we crudely emulate the effect of
Equation 42 applied at every single time step!?. This leads to quite acceptable results,
and it is the procedure that we adopt in our numerical simulations.

7.3.2. Estimation from the code vector positions

For completeness, we shall now describe how 1o make a crude estimate of p(y) and
Vo(y) from a single realisation of the code vectors, although we do not make use of this
prescription in our numerical simulations. We may obtain the required estimate by
measuring the zeroth and first moments (My(y,R) and M,(y,R) respectively) of the code
vector positions within a sphere IE-yll < R. The definition of these moments is

MGR)=  [fdEp®E  MOR=  [dEpE) Ey) @3)
hE-ylIsR -yIsR
whereas the estimate of these moments is
MyyR)= X1 MyR)= Y&y (44)
HE-yIISR E-yllSR

Combining Equation 43 and Equation 44, and inserting the expression in Equation 25
yields

N N(N+2)
ply) = = X1 Vpiy) = = (E-Y) (45)
oy RY WE-yISR ay RY 2ng.ynsx

whence Vp(y)/p(y) is given by

X&)
Vo) N+2 ek (N+)<E-y>p 05 "
W R 3 TR )
UE-ylI<R

where <---> denotes an average over code vectors.

The optimum choice of R is a tradeoff. If R is too small then there are too few code
vectors in the sphere lIiE-yll < R to allow a good estimate to be made in Equation 44. If R
is too big then we invalidate the assumption that we may ignore the higher order terms
(c.g. curvature) in the Taylor expansion in Equation 25. Between these two extremes will
lie an optimum choice of R, whose value can be determined by experiment.

19his can easily be checked as follows B!(1~Pluexpllog (B)N1-B)lmexpllog(1-(1-BIK1-B)lmenp-(1-B-- (1 -B)lexp(- 1)=}/e.
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